

ASim2024

The 5th Asia Conference of the International Building Performance Simulation Association (IBPSA) December 8 – 10, 2024 Osaka, Japan https://www.asim2024.org/

Organizer

IBPSA Japan Graduate School of Engineering, Osaka University Co-organized by IBPSA China, Korea, India, Indonesia and Singapore

Host

Osaka University

Welcome!!

The Japanese affiliate of the International Building Performance Simulation Association (commonly known as IBPSA) will hold the 5th Asia Conference of IBPSA, ASim2024, from 8 to 10 December 2024 in Osaka. This international conference will bring together top researchers and outstanding students from Asia who are working on building performance simulation as well as social challenges related to decarbonization and AI, and on the fundamentals and applications of advanced technologies from an architectural and urban perspective.

About IBPSA and ASim conferences	3
Program overview	4
Regular sessions	5
Site visit	6
Informal sessions	7
Social events	19
Registration and visa application	21
Venues and access	23
Accommodation	26
Organizaing team	
Sponsors	31

About IBPSA and ASim conferences

IBPSA (http://www.ibpsa.org/), the International Building Performance Simulation Association, is a nonprofit organization founded to advance and promote the science of building performance simulation in order to improve the design, construction, operation, and maintenance of new and existing buildings worldwide. IBPSA functions as a community of more than 4000 professionals (architects, researchers, engineers, developers and software vendors). The Society aims to promote and disseminate science and technology related to the fundamentals and applications of performance simulation as described above, as well as to promote communication and friendship among members and exchange with overseas researchers and research organizations.

IBPSA holds an international conference entitled Building Simulation (abbreviated BS) every two years, but in years when Building Simulation is not held, the Asian IBPSA affiliates organize the Asia Conference of International Building Performance Simulation Association (ASim).

In the past, ASim has invited papers for abstract review and 10-15 minute oral and poster presentations. The most important ASim feature is that it is a friendly conference for students and researchers who have not had the opportunity to gain international experience before. The participants are mostly students, researchers and practitioners from the Asian region whose first language is not English, and student presentations are very common. Even those who are not used to communicating in English can make a contribution to the conference if they arrive on the day with good preparation. The conference can also create and provide opportunities for young researchers to chair and lead discussions, and can be a stepping stone for them to become active internationally. For students, the interactions with other Asian students will be stimulating. For corporate participants, we believe it will provide a networking opportunity to connect with talented Asian students and researchers from other Asian countries who are conducting active research.

Program overview

The program of ASim2024 is organized as shown in Figure 1. Highlights are as follows:

- The main conference sessions will take place on December 9 and 10. There will be seven parallel sessions with regular presentations. Each session will have a total of 15 minutes: 11 minutes for presentation and 3 minutes for discussion.
- On the afternoon of December 8, in addition to the on-site registration for the conference, there will be a site visit and informal sessions.
- On December 9 and 10, one or two informal sessions will be held in parallel with the regular sessions.
- A banquet (an official conference dinner) will be held on the evening of December 9 as a social event. The venue is Sumiyoshi Taisha, one of the longest-established shrines in Osaka.
- A welcome reception with casual drinks will be held on December 8 for those visiting the venue for the onsite registration, informal sessions, and site visit. In addition, a social event for networking will be held after the closing session on December 10. Dinner will not be served at these events.

More details will be announced as they become available.

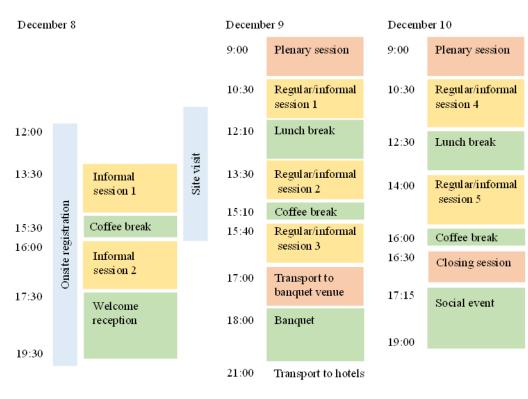
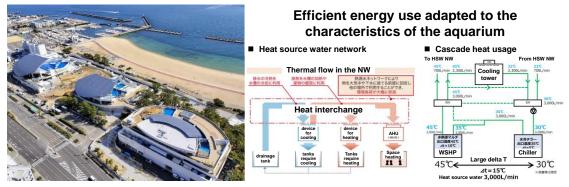


Fig. 1 Program overview

Regular sessions

Oral Presentation:

- 5 topics, 7 parallel sessions, 35 Sessions in total.
- Each session has 7 presentations in 2 hours except session 3.
- Each author has 11 minutes for presentation and 3 minutes for discussion.
- Presentations are placed in each session with consideration of topics chosen by the author. However, it is not guaranteed to be placed as they requested because of the balance of presentations.
- Topics
 - ▶ FUTURE: Simulating future metropolis
 - > DESIGN: Performance-driven designs
 - SMART: Smart building systems
 - > DIGITAL: Modeling for the digital world
 - HUMAN: Human-centered simulation/design


Poster Presentation:

- 5 topics as well
- Poster display and discussion
- The authors can choose the presentation preference when submitting a full paper. However, there is a possibility to be set as "poster presentation" even if the author chooses the type of presentation as "oral presentation" considering the results of the review.

Site visit

Backyard Tour of KOBE SUMA SEA WORLD (https://www.kobesuma-seaworld.jp/en/)

You will tour the backyard of a state-of-the-art aquarium facility that just opened on June 1, 2024, with a direct commentary by the HVAC/facility designer. They will explain the design techniques and status of optimal operation of energy-intensive facilities with different water temperature and water quality requirements, such as Orcas, Dolphins, and other fish.

https://nishi2.jp/255129/

https://www.kenken.go.jp/shouco2/pdf/ppt/R3-1/03saitaku.pdf

https://www.kobesuma-seaworld.jp/facilities/area/

Date: December 8th, 2024

Time: 12:00-16:30 (to be determined in detail, from the conference venue to the site to the conference venue)

Transportation: Bus prepared by ASim2024

Address: 1-3-5 Wakamiyacho, Suma Ward, Kobe, Hyogo 654-0049

Participants number : Up to 20

<u>Tour inside the aquarium is not included in the tour</u>. If you wish to visit the aquarium, please arrange your own tickets (pre-booking recommended) and return transportation.

Informal sessions

During ASim2024, we will hold several informal/organized sessions designed to promote new ideas, debates, and discussions in an informal setting. Informal/organized sessions are not paper-based, but can be interactive, collaborative, and fun.

The informal/organized sessions will take place in the afternoon on December 8 (one day before the main conference) and on December 9 and 10 in parallel to regular sessions consisting of research presentations on submitted papers. The tentative program is as follows.

Details of the sessions can be found on the following pages.

Date and time	Session A	Session B
December 8 1:30 pm – 3:30 pm	Simulating and optimizing building-vehicle-grid interaction The Hong Kong University of Science and Technology, Hong Kong, Prof. Zhe Wang Tsinghua University, Prof. Geng Yang	Surrogate modeling for multi-scale building performance simulation and its applications Yonsei University, South Korea Prof. Jungmin Han
December 8 4:00 pm – 5:30 pm	Urban scale modeling to inform city planning of decarbonization and climate resilience Lawrence Berkeley National Laboratory, USA Dr. Tianzhen Hong	
December 9 Morning	Path to Carbon Neutrality for Mega Cities: Focusing on Rating Methods University of Illinois at Urbana-Champaign Dr. Yun Kyu Yi	
December 9 Afternoon 1	Indoor Green Building Simulation with OpenFOAM and BIM HVACTool TIAN Building Engineering, Germany Thomas Tian	Visualizing invisible heat: analysis methods for radiant heat transfer National University of Singapore, Singapore, Dr. Chong Zhun Min Adrian
December 9 Afternoon 2	Novel machine learning paradigms-enabled solutions for smart building energy modeling and management Shenzhen University, China, Dr. Cheng Fan	
December 10 Morning	CFD Applications in Building Performance Simulation and Beyond National University of Singapore, Singapore Dr. Lup Wai Chew	
December 10 Afternoon 1	Bits4Watts 2024: International Workshop on Low- Carbon Building and Urban Energy Systems Powered by Data, AI, and Smart Controls National University of Singapore, Singapore Dr. Maomao Hu	
December 10 Afternoon 2	Model-based control strategy and application Tianjin University, China, Dr. Y. Ding; Prof. Zhe Tian	

Informal Session Content (may be updated)

Session title	Simulating and optimizing building-vehicle-grid interaction
Time	December 8, afternoon
Keywords	Building-vehicle-grid interaction, smart grid, electric vehicle
Highlights	 Given the growing popularity of electric vehicles, the interplay among buildings, electric vehicles, and the power grid has gained significant importance in establishing a versatile, efficient, and intelligent energy infrastructure. The objective of this session is to facilitate the exchange of research pertaining to the modeling and optimization of the interaction between buildings, electric vehicles, and the power grid.
Session description	With the increasing prominence of electric vehicles (EVs) and the pressing need for sustainable energy solutions, understanding and improving the dynamic relationship between buildings, EVs, and the power grid has become of paramount importance. The seminar aims to foster an environment for knowledge exchange and collaboration among researchers, industry experts, and policymakers in the field of energy systems and sustainable transportation. By bringing together experts from various disciplines, we will explore the latest advancements in modeling and optimizing the intricate interplay between buildings, EVs, and the power grid. By the end of the session, participants will have a deeper understanding of the state-of-the-art modeling and optimization techniques for more efficient building-vehicle-grid interaction, and will be able to identify existing gaps that need to be addressed in future research and development.
Length of session	90-120 minutes
Presenters	 The presentation titles are to be determined. The following presenters agree to give a talk in this session: Borong LIN, Tsinghua University Zhe WANG, The Hong Kong University of Science and Technology Weirong ZHANG, Beijing University of Technology Shiming TIAN, China Electric Power Research Institute Yang GENG, Tsinghua University

Session title	Surrogate modeling for multi-scale building performance simulation and its applications
Time	December 8, afternoon
Keywords	Surrogate modeling, building performance simulation, energy modeling, wind modeling, generative modeling, Artificial Intelligence
Highlights	 Participants will Understand the basics of surrogate modeling and its applications in building performance simulations Try hands-on activities with prepared files, using a campus model as test-case Run various simulations including energy, airflow, and other associated metrics
Session description	This workshop will introduce participants to the fundamentals of surrogate modeling and its applications in multi-scale building performance simulation. Surrogate models are computationally efficient approximations of complex, high-fidelity simulation models, enabling faster design space exploration and optimization. During the workshop, participants will gain an understanding of the basics of surrogate models, their use cases, and applications in building performance simulation. They will explore surrogate modeling for energy and wind analysis using Python in Google Colab, Rhino3D, and Grasshopper. Participants will engage in hands-on activities using prepared files and a provided campus model as a test case, allowing them to run various simulations, including energy and wind analyses, and gain practical experience with surrogate modeling techniques. The workshop will also discuss the potential benefits and applications of surrogate modeling in building performance simulation, as well as various methods suitable for different use cases. This will include topics such as design optimization and real-time performance prediction. By the end of the workshop, participants will have a good foundational understanding of surrogate modeling techniques and their applications in multi-scale building performance simulation. They will be equipped with the knowledge and skills necessary to implement surrogate models in their own projects, enabling more efficient and effective design processes. Workshop followed by the lecture. Integrated workflow: Rhino and Grasshopper and Colab/Jupyter Notebook Requirements Bring your laptop with Rhino, Grasshopper installed and Google Colab if interested to follow along. A Google Drive with workshop files will be provided prior to the workshop.
Length of	60-90 minutes
session	
Presenters	Jung Min Han, Yonsei UniversityYu Qian Ang, National University of Singapore

Session title	Urban scale modeling to inform city planning of decarbonization and climate resilience
Time	December 8, afternoon
Keywords	urban building modeling, urban energy system, decarbonization, climate resilience, building simulation
Highlights	 UBEM is a powerful modeling and simulation technique to provide insights informing city decision making on building energy use, decarbonization, building climate resilience, and urban environment sustainability. Four presentations highlight recent research on UBEM for cities in USA and China. The approaches can be adopted for other cities and countries.
Session description	This session showcase recent interesting research of using urban scale modeling to assess urban wind environment, building energy performance, building resilience, and anthropogenic heat from buildings in cities. Four presentations are:
	Title: A downscaling prediction method of wind environment suitable for urban building energy consumption analysis
	Abstract: Urban microclimate changes have a great impact on building energy consumption. The setting of boundary conditions in numerical simulation affects the accuracy of wind environment simulation. However, urban morphology is complex, and commonly used downscaling simulation methods are time-consuming and computationally intensive. In response to the above issues, this study proposes an ANN-based wind environment downscaling prediction model based on prototype block models (PBMs). The PBMs model established in the study takes into account the urban morphological factors that affect the characteristics of the urban wind environment. The ANN model is used to extract the CFD wind speed simulation results of BMPs, thereby saving computing time. Taking the Nanjing area as an example, by comparing the predictive performance under 15 combinations of explanatory variables, the effectiveness of the proposed method was validated.
	Title: Assessing building stock resilience to extreme cold weather based on urban building energy modeling
	Abstract: Climate change and expected extreme weather conditions have raised significant concerns, particularly regarding the energy supply for urban buildings. In cities with district heating, high-resolution simulations of building energy demand are crucial for efficient energy allocation and scheduling. However, variations in building age and envelope degradation make it difficult to capture thermal properties accurately. Additionally, spatial weather differences in the urban area impact energy demand. This study proposes a novel UBEM approach to assess building stock resilience, considering the distribution of envelope thermal properties and microclimate conditions. A validated UBEM of Beijing is established and building resilience to future cold waves and retrofit strategies are analyzed. The results show that the approach effectively produces high-resolution energy demand analyses during extreme weather.
	Title: Urban building energy modeling based on a modularized neural network incorporating physical priors
	Abstract: Bottom-up UBEM models require detailed building information and substantial modeling effort, while top-down models cannot intrinsically predict future trends and provide only aggregated data without precise spatial or temporal detail. To improve the scalability and the reliability of bottom-up models, this study proposes a

	 modularized neural network incorporating physical priors, offering an effective solution for urban-scale building energy modeling. The integration of physical constraints ensures accurate responses to varying conditions. The proposed model demonstrates high accuracy in energy demand calculations. Title: Integrating urban building energy modeling with urban microclimate modeling to quantify the anthropogenic heat from buildings and its impact on urban environment
	Abstract: Anthropogenic heat (AH) from buildings increases urban air temperature and contributes to the urban heat island effect. Building AH exhibits strong seasonal and diurnal patterns with large spatial variations. Building AH peaks in May and reaches a maximum of 878 W/m2, with higher AH attributed to large building density, a high percentage of industrial buildings, and older building stock. During the July 2018 heatwave in LA County, building AH leads to a daily max and min ambient temperature increase of up to 0.6 °C and 2.9 0.6 °C respectively. It is recommended that reducing summer building AH should be considered by policy makers in developing mitigation measures for cities to transition to clean energy while improving heat resilience.
Length of session	60-90 minutes
Presenters	 Prof. Da Yan, Tsinghua University, China. Assessing building stock resilience to extreme cold weather based on urban building energy modeling; Prof. Bing Dong, Syracuse University, USA. Urban building energy modeling based on a modularized neural network incorporating physical priors; Dr. Xin Zhou, Southeast University, China. A downscaling prediction method of wind environment suitable for urban building energy consumption analysis; Dr. Tianzhen Hong, LBNL, USA. Integrating urban building energy modeling with urban microclimate modeling to quantify the anthropogenic heat from buildings and its impact on urban environment.

Session title	Path to Carbon Neutrality for Mega Cities: Focusing on Rating Methods
Time	December 9, morning
Keywords	Carbon neutral, Energy rating system, Data uncertainty, Inverse Modeling, Mixed use and building type
Highlights	 In this session, we will hear from experts and gather audience opinions on achieving carbon neutrality in mega cities. We'll discuss strategies for reducing and offsetting carbon emissions with help of energy rating systems. We'll also address data uncertainty and its impact on building assessments and decision-making. Additionally, we like to discuss on inverse modeling by inferring unknown parameters from observed data.
Session description	In this session, we will hear from experts and collect audience opinions on important topics related to sustainable building practices and energy management, particularly focusing on achieving carbon neutrality in mega cities. We like to discuss on strategies to reduce and offset carbon emissions using the energy rating system to evaluate and compare the energy performance of buildings. The session also like to address and hear about data uncertainty, highlighting how variability and inaccuracies in data can impact building assessments and decision- making. We also delve into inverse modeling, a technique used to infer unknown parameters based on observed data, which can be crucial for improving energy simulations and building performance. Finally, we will consider the implications of mixed-use and building types, exploring how different building functions and designs influence energy consumption and sustainability strategies.
Length of session	30-60 minutes
Presenters	 Dr. Yun Kyu Yi, University of Illinois at Urbana-Champaign, Dr. Ki-hyung Yu, Korea Institute of Civil Engineering and Building Technology. Include more participant as need

Session title	Indoor Green Building Simulation with OpenFOAM and BIM HVACTool
Time	December 9, afternoon
Keywords	OpenFOAM, BIM HVACTool, CFD, Indoor Simulation
Highlights	 Setting up an indoor simulation for OpenFOAM using BIM HVACTool Demonstrating all necessary steps for the simulation process Focusing on thermal comfort evaluation Showcasing the workflow from BIM model to CFD analysis Explaining key parameters and settings for accurate results Visualize the simulation results using ParaView and render them with NVIDIA Optix
Session description	This session will demonstrate the setup of an indoor simulation for OpenFOAM using BIM HVACTool software. We will guide you through all necessary steps in the simulation process, focusing particularly on evaluating thermal comfort. The demonstration will cover the entire workflow, from the initial BIM model to the CFD analysis. Throughout the session, we will explain key parameters and settings crucial for accurate results. Additionally, we will show how to visualize the simulation results using ParaView and render them with NVIDIA Optix, providing a comprehensive overview of the thermal comfort assessment and visualization process in building design.
Length of session	90-120 minutes
Presenters	Thomas Tian, TIAN Building Engineering

Session title	Visualizing invisible heat: analysis methods for radiant heat transfer
Time	December 9, afternoon
Keywords	Heating and cooling, radiant systems, sensors, thermal comfort
Highlights	 Review the basics of heat transfer and thermal comfort characterization History of measurements of thermal comfort variables: temperature, humidity, air movement, thermal radiation Advanced techniques for measuring radiant heat transfer Deep dive on radiant heat transfer spatial and temporal variations Challenges in using temperature proxies such as Mean Radiant Temperature and Operative Temperature The concept of a human-centric heat transfer analysis for rooms: the Human Coefficient of Performance (HCOP)
Session description	Achieving thermal comfort is the end goal of heating and cooling systems installed in buildings. Yet these systems rely limited feedback from thermostats that generally only measure air temperature. Historically the concept of thermal comfort is relatively new, and actually evolved out of occupational health studies of heat endurance. Many measurement devices and techniques, including the globe thermometer for radiant heat, are vestiges of studies of heat resilience in factories by doctors in the 1920's and 1930's. Since Fangers seminal work in the 1970's building comfort models that include inputs from the 4 key environmental variables, temperature, humidity, air speed, and radiant temperature, researchers have strived to achieve good scores of his metrics of PMV and PPD. But these metrics still use the old tools of globe thermometers and Mean Radiant Temperature. This workshop will present new tools and techniques for measuring radiant heat transfer, and expose participants to the significant and overlooked variation of radiant heat across small spaces and short periods of time. This spatial and temporal heterogeneity can only be measured with new tools, and demonstrates significant opportunities to reconsider how radiant heat can be used to create more nuanced control beyond the coarse zones of standard air conditioning. We will discuss how a Watts-based approach to thermal comfort can offer additional insights to human comfort that go beyond the Fanger's statistics, and take advantage of contemporary microprocessor hardware and computational power. Participants will come away with a new perspective on how we define the performance of heating and cooling systems – one that moves away from the failed paradigm of making rooms comfortable, and aims at making people comfortable. In the end the performance of building should not be based on performance normalized by floor area as in EUI, but rather the people whose heat transfer is managed most effectively with the least energy.
Length of	60-90 mins
session Presenters	 Forrest Meggers, Associate Professor, Director of CHAOS, Princeton University Ippei Izuhara, President, GET/ General Manager, Sanken/ Visiting Fellow, Princeton University Kianwee Chen, Environmental Technology Senior Researcher, GET/Sanken Clayton Miller, Associate Professor, National University of Singapore Genku Kayo, Associate Professor, Tokyo City University

Session title	Novel machine learning paradigms-enabled solutions for smart building energy modeling and management	
Time	December 9, afternoon	
Keywords	Machine learning; Smart building operation; Large language models; Data-driven models; Building energy management.	
Highlights	 Introduction of typical data-driven solutions for building energy modeling and management. Discussion on practical data challenges faced in building energy modeling and management together with the potentials of novel machine learning paradigms. Applications of novel machine learning paradigms for smart building operations. 	
Session description		
Length of session	60-90 minutes	
Presenters	 Linda Fu Xiao, Professor, The Hong Kong Polytechnic University Jianli Chen, Professor, Tongji University Ke Yan, Professor, Hunan University Marco Savino Piscitelli, Assistant professor, Polytechni di Torino Cheng Fan, Associate professor, Shenzhen University 	

Session title	CFD Applications in Building Performance Simulation and Beyond
Time	December 10, morning
Keywords	Computational fluid dynamics (CFD); airflow simulations; best practice guideline; lesson learnt
Highlights Session description	 Introduction to CFD in building performance simulation - Overview of the role of CFD in analyzing airflow, thermal comfort, indoor air quality, and energy efficiency in buildings. Lessons learned from real-world case studies - Present a selection of case studies that showcase the application of CFD in building performance simulation, focusing on the successes, challenges, and lessons learned. Best practices and guidelines for CFD simulations - Discuss key considerations, methodologies, and approaches for achieving accurate and reliable CFD simulations in building performance analysis. Overcoming challenges in CFD simulations - Explore the limitations, potential pitfalls, and common challenges faced in CFD simulations, and provide strategies and solutions to overcome them. Q&A and open discussion for participants to seek clarification, share their experiences, and gain insights. The application of Computational Fluid Dynamics (CFD) in building performance simulation has gained significant importance in achieving sustainable and energy-efficient buildings. However, there are various challenges and considerations that need to be addressed to ensure accurate and reliable results, from grid generation to selection of boundary conditions as well as from model validation to result analysis. This session will provide a platform for sharing lessons learned and best practices in utilizing CFD for building performance simulation. (1) Increased awareness of the successes, challenges, and lessons learned from real-world CFD applications in building performance simulation. (2) Improved understanding of best practices and guidelines for utilizing CFD effectively in building performance analysis. (3) Identification of potential pitfalls and challenges in CFD simulations and strategies to overcome them. (4) Enhanced collaboration and knowledge exchange among researchers, practitioners, and industry p
Length of session	45-60 minutes
Presenters	 Yoshihide Tominaga (Niigata Institute of Technology) Zitao Jiang (Niigata Institute of Technology) Lup Wai Chew (National University of Singapore) Hee Joo Poh (National University of Singapore)

Session title	Bits4Watts 2024: International Workshop on Low-Carbon Building and Urban Energy Systems Powered by Data, AI, and Smart Controls
Time	December 10, afternoon
Keywords	Building and urban energy systems; Building decarbonization; Machine learning; Smart controls; Data analytics
Highlights	 6 presentations by colleagues from Hong Kong, Italy, Japan, Singapore, and the UK Recent developments and demonstrations of data management, artificial intelligence, model-based diagnostic and control technologies, and grid interactions
Session description	Digitalization is becoming increasingly crucial in making today's buildings low- carbon and energy-efficient. According to the International Energy Agency, utilizing the data from ubiquitous sensors, actuators, and IoT devices could save around 10% of energy use in residential and commercial buildings by 2040. By leveraging data and data-driven techniques, various stakeholders can gain valuable insights and make better decision-making throughout all phases, from design through construction to operations.
	This workshop aims to explore the integration of data, AI, and advanced controls in building energy management from individual buildings to the community scale. The workshop will feature selected presentations of case studies that highlight recent developments and demonstrations of data management, artificial intelligence, model-based diagnostic and control technologies, and grid interactions. The format will encourage an open discussion to address what is necessary to move from research to the widespread adoption of smart data-driven building technologies. By the end of the workshop, participants will have a deeper understanding of the current state of smart data-driven technologies in buildings and will be able to identify existing gaps that need to be addressed in future research and development.
Length of	90-120 minutes
session	
Presenters	 Ruchi Choudhary, Professor, Cambridge University, UK Alfonso Capozzoli, Professor, Polytechnic University of Turin, Italy Linda Xiao, Professor, The Hong Kong Polytechnic University, Hong Kong Shohei Miyata, Assistant Professor, The University of Tokyo, Japan Zhe Wang, Assistant Professor, The Hong Kong University of Science and Technology, Hong Kong Maomao Hu, Assistant Professor, National University of Singapore, Singapore

Session title	Model-based control strategy and application		
Time	December 10, afternoon		
Keywords	High-fidelity simulation, Model calibration, Control strategy, Engineering application		
Highlights	 Development of high-fidelity simulation platform of building energy system Generation and validation of building energy system operation strategies based on high-fidelity modelling 		
Session description	 Generation and validation of building energy system operation strategies based on high-fidelity modelling Under the background of low carbonization, the building energy is transforming to the system integrated with cooling, heating and power supply, which is more and more complex. On the other hand, the external energy price fluctuations are becoming more and more frequent, which brings more difficulties to the operation and maintenance of the system. With the high-fidelity simulation model system that fully reflects the actual dynamic feature of building energy system, it is feasible for researcher or engineer to optimize and generate control strategies online or offline for the system under the diverse conditions of different energy price policies, such as time-of-use power price or demand side response power price, etc. Besides, the HVAC control strategy optimization is a hot topic of study with the development of artificial intelligent technologies. A lot of control strategies is generated based on model or model-free technology. But them are seldom applied to real practical engineering application. In order to realize the above research concepts, there are a long way to go. The following questions are expected to answer: 1.What kind of simulation model should be built? 2.How to balance the computational efficiency and accuracy in the process of strategy optimization? 4.How to break through the barrier between the study results and the application. That is, how to apply the simulation performance of optimized strategy generated by simulation in the actual project? 6.And so on This session proposed hopes to gather researchers in the direction to exchange research ideas, technical routes and engineering application case study, promote the development of simulation modeling in the field of building energy, and better serve and support engineering practice. 		
Length of session	45-60 minutes		
Presenters	Dr. J.D. Niu Assoc prof. Y. Ding Assoc prof. X. C. Yang Prof. J.Z. Ma Prof. J.Q. Peng Dr. J.J. Jiang		

Social events

Bunquet on December 9

A banquet will be held on the evening of December 9 as a social event. The venue is Sumiyoshi Taisha, one of the longest-established shrines in Osaka.

Sumiyoshi Taisha has stood watch over Osaka Bay for almost 2,000 years. Founded by the legendary empress-regent Jingū in the third century, it honors four deities: a trio of sea gods called the Sumiyoshi Sanjin, and Empress Jingū herself, whose spirit was enshrined alongside them after her death.

Since its founding, Sumiyoshi Taisha has been linked with the sea. People involved in fishing, shipping, and other maritime industries still come to pray at Sumiyoshi for safe voyages. The shrine offers spiritual protection for the port of Osaka, which was the main gateway to Japan's historical capitals and the rest of the country until the late nineteenth century.

Sumiyoshi Taisha has close ties with poetry, the performing arts, sumo wrestling, success in love and business, and the safe delivery of babies—a range that reflects the shrine's long history and its place in the hearts of the people of Osaka, who affectionately call it "Sumiyossan."

The shrine is famous throughout Japan for its rites and festivals. Two million people come to Sumiyoshi Taisha each January for hatsumōde, the traditional first shrine visit of the year. The midsummer Sumiyoshi Matsuri is one of Osaka's biggest festivals, climaxing in a parade of portable shrines. Other events, such as ritual rice planting in June and a moon-viewing celebration in early autumn, attract visitors with music, dancing, and readings of traditional poetry.

住吉大社 Sumiyoshi Taisha 2-9-89 Sumiyoshi, Sumiyoshi-ku, Osaka 558-0045 <u>Google map</u> <u>https://www.sumiyoshitaisha.net/en/</u>

Social events on December 8 and 10

- A welcome reception with casual drinks will be held on December 8 for those visiting the venue for the onsite registration, informal sessions, and site visit. In addition, a social event for networking will be held after the closing session on December 10. Dinner will not be served at these events.
- More details will be announced as they become available.

Registration and visa application

The registration site will open on September 5th. The registration will take place on ConfTool, where you submitted your abstract and full paper. Please log in to your account and complete the registration. The participation fee is in the table below.

Classification	Amount (Early Bird)	Amount	Onsite
Regular	\$550	\$650	\$750
Student	\$300	\$400	\$750

Early registration deadline: October 31, 2024 Online registration deadline: November 31, 2024

Conference fee includes;

- all access to the oral, poster and informal sessions
- welcome reception (8th Dec.)
- banquet (9th Dec.)
- and social event (10th, Dec.)

* Those who wish to participate in the technical tour are requested to register through the official registration site. The fee is \$100, and we can accommodate up to 20 participants * If you have an accompanying person for the banquet, please check the 'accompanying person' option on the registration site. In this case, a fee of \$120 will be charged for the accompanying person.

Invitation Letter

You will be able to download the invitation letter (PDF format) from ConfTool.

○ Invitation and Confirmation for Presenting Authors

You may now download and print out your invitation and confirmation as presenting author (PDF file).

VISA application

If you need any documents for your visa application (such as a letter of reason for invitation), please check the relevant checkbox during registration. ASim2024 will then send a link to a Forms page to your email address, where you can provide the necessary information.

VISA			
	~	documents for VISA If you need special documents for VISA to travel to Japan, please check the box.	

Venues and access

The venues are Osaka University Nakanoshima Center and Congres Square Osaka Nakanoshima, which are adjacent to each other. The venues are located in Nakanoshima, Osaka, with good access from central Osaka.

Osaka University Nakanoshima Center 3-53 Nakanoshima 4-chome, Kita-ku, Osaka 530-0005, Japan 大阪大学中之島センター 〒530-0005 大阪府大阪市北区中之島 4-3-53 <u>Google map</u>

Congres Square Osaka Nakanoshima 3-51, Nakanoshima 4-chome, Kita-ku, Osaka 530-0005, Japan コングレスクエア大阪中之島 〒530-0005 大阪府大阪市北区中之島 4-3-51 Google map

Access by TRAIN

- From JR Osaka Station, take the JR Loop Line to Fukushima Station (one stop), 13-minute walk (800 m).
- 9-minute walk (650 m) from Hanshin Fukushima Station.

Access by BUS

• Take bus No. 53 or No. 75 from JR Osaka Station, get off at the Taminobashi bus stop (田簑橋), and walk south 2 min. (Watanabebashi is the nearest bus stop for the return trip back to JR Osaka Station.)

Access by AIR

- From Kansai International Airport (KIX)
 55-min. train ride to JR Osaka Station.
 60-min. ride to JR Osaka Station via airport limousine bus.
- From Osaka International Airport (Itami)
 30-min. ride to JR Osaka Station via airport limousine bus.

Osaka University Nakanoshima Center

The building was refurbished in 2023. Most of the regular sessions are held in this building.

Keizo Saji Memorial Hall (130 with desks, 220 without desks)

6th floor, co-creation floor

7th floor, co-creation floor

Congres Square Osaka Nakanoshima

The building was constructed in 2024. Plenary sessions are held in this building.

Plenary session room (Square 323)

Accommodation

The following hotels can be reserved through our partner travel agency website (available from around September 20). We will notify you as soon as the sites become available. Please note that the number of rooms is limited and 10% of the room charge or 2,200 yen will be charged as a service fee.

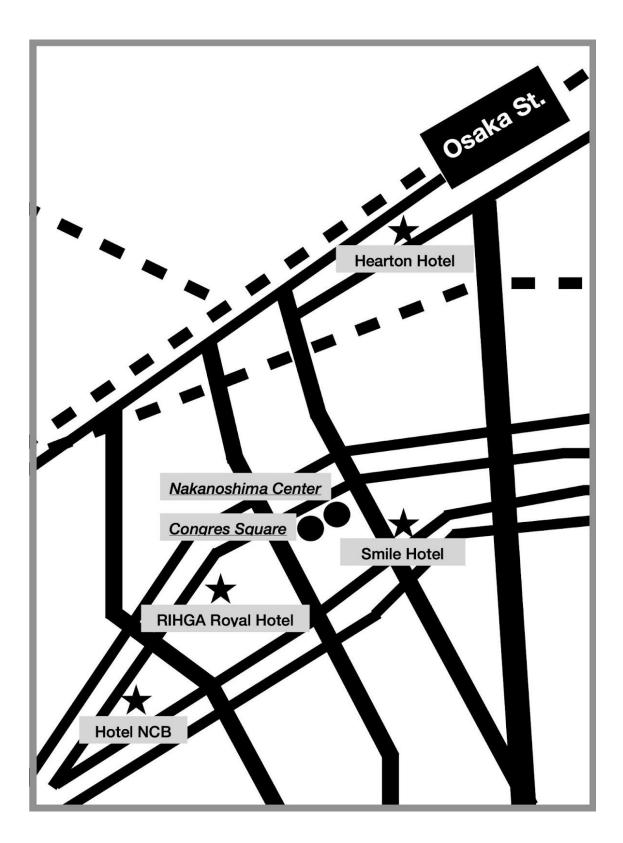
< Umeda station area>

Hearton Hotel Nishiumeda

JPY11,000 / night (Breakfast&Tax included / Reservation fee excluded)
https://www.hearton.co.jp/en/nishiumeda/
3-3-55 Umeda, Kita-ku, Osaka 530-0001
13 min's walk from Nakanoshima Center / 5 min by Taxi

< Nakanoshima District>

RIHGA Royal Hotel Osaka


JPY25,300 / night (Breakfast&Tax included / Reservation fee excluded)
https://www.rihga.com/osaka
5-3-68 Nakanoshima, Kita-ku, Osaka 530-0005
6 min's walk from Nakanoshima Center

Smile Hotel Osaka Nakanoshima

JPY10,000 / night (Breakfast&Tax included / Reservation fee excluded)
https://smile-hotels.com/hotels/show/osakanakanoshima
3-5-27, Nakanoshima, Kita-ku, Osaka 530-0005
6 min's walk from Nakanoshima Center

Hotel NCB

JPY10,000 / night (Breakfast&Tax included / Reservation fee excluded)
https://www.japanican.com/hotel/japan/osaka/hotel-ncb?aff=rsv
6-2-27 Nakanoshima, Kita-ku, Osaka 530-0005
13 min's walk from Nakanoshima Center

Organizaing team

ASim2024 is planned and organised by the researchers listed in Table 1. In addition to the committee members listed in Table 1, a Scientific committee is organised by the representatives of the chapters listed in Table 2 to plan the scientific programme.

Yamaguchi,	Associate Professor, Graduate School of Engineering, Osaka
Yohei	University
	IBPSA Japan affiliate director
Makiko Ukai	Associate Professor, Graduate School of Environmental Studies,
	Nagoya University
Shohei	Project Lecturer, Graduate School of Engineering, The University of
Miyata	Tokyo
Genku Kayo	Associate Professor, Faculty of Environment, Tokyo City University
Takashi	Associate Professor, School of Environmental and Social Science
Asawa	and Engineering, Tokyo Institute of Technology
Jihui Jyan	Osaka Metropolitan University
Masato	Senior Research Officer, National Institute for Land and
Miyata	Infrastructure Management
Tatsuo Nagai	Professor, Faculty of Engineering, Tokyo University of Science
Masaya	Professor Emeritus, Nagoya University
Okumiya	Senior Researcher, Nagoya Institute of Industrial Science
Akihito Ozaki	Professor, Faculty of Human Environment, Kyushu University
Yoshiyuki	Professor, Graduate School of Engineering, Osaka University
Shimoda	
Daisuke	Professor, Graduate School of Human and Environmental Studies,
Sumiyoshi	Kyushu University
Jun Tanimoto	Professor, Graduate School of Interdisciplinary Science and
	Engineering, Kyushu University
Hideaki	Osaka University
Uchida	
	Professor, Nagoya City University
Yoon	
	Yohei Makiko Ukai Shohei Miyata Genku Kayo Takashi Asawa Jihui Jyan Masato Miyata Tatsuo Nagai Masaya Okumiya Akihito Ozaki Yoshiyuki Shimoda Daisuke Sumiyoshi Jun Tanimoto Hideaki Uchida Gyuyoung

 Table 1: ASim2024 executive committee members

Affiliate	Name	Affiliation
Japan	Serikawa Mao	Kanagawa University
	Keiichiro Taniguchi	The University of Tokyo
	Sayaka Kindaichi	Hiroshima University
	Eisuke Togashi	Kogakuin University
	Satoru Iizuka	Nagoya University
China	Yingxin Zhu	Tsinghua University
	Youming Chen	Hunan University
	Liu Yang	Xi'an University Of Architecture And Technology
	Jing Liu	Harbin Institute Of Technology
	Zhe Tian	Tianjin University
	Zhun Yu	Hunan University
	Yan Gao	Beijing University Of Civil Engineering And Architecture
	Borong Lin	Tsinghua University
	Xin Zhou	Southeast University
	Fulin Wang	Tsinghua University
	Zhen Tian	Hunan University
	Linda Xiao.	Hongkong PloyU
	Yiqun Pan	Tongji University
	Cheng Fan	Shenzhen University
	Yu Huang	Guangzhou University
	Yixing Chen	Hunan University
	Zhe Wang	Hong Kong University of Science and Technology
	Jianlin Liu	Donghua University
	Shuqin chen	Zhejiang University
	Song Pan	Beijing University of Technology
	Jingchao Xie	Beijing University of Technology
	Shan Hu	Tsinghua University
South	Junseok Park	Hanyang University
Korea	Myoung-Souk Yeo.	Seoul National University
	Hyeun Jun Moon	Dankook University
	Taeyeon Kim	Yonsei University
	Cheol-Soo Park	Seoul National University
	Seong-hwan Yoon	Pusan National University
	Sun-Sook Kim	Ajou University
	Jin Woo Moon	Chung-Ang University
	Sumin Kim	Yonsei University
	Minki Sung.	Sejong University
	Jae-hun Jo	Inha University
	Jae-Weon Jeong	Hanyang University
	Geun Young Yun	Kyung Hee University
	Jaehan Lim	Ewha Womans University.
	Kwang Ho Lee	Korea University
	Yeonsook Heo	Korea University
	Young-Hum Cho	Yeungnam University

Table 2 Scientific Committee members

Table 2 Scientific Committee members (continued)

South	Woong June Chung	Gachon University
Korea	Kyu-Nam Rhee	Pukyong National University
	Euijong Kim	Inha University
	Dong Hwa Kang	University of Seoul
	Deuk-Woo Kim	Korea Institute of Civil Engineering and Building Technology
	Seung-Hyo Baek	Mokwon University
	Jongyeon Lim	Kangwon National University
	Young Hak Song	Gyeongsang National University
Singapore	Adrian Chong	National University of Singapore
	Clayton Miller	National University of Singapore
	Steve Kardinal Jusuf	Singapore Institute of Technology
	Poh Hee Joo	Agency for Science, Technology and Research (A*STAR)
	George Xu	Agency for Science, Technology and Research (A*STAR)
	Yu Qian Ang	National University of Singapore
	Chew Lup Wai	National University of Singapore
	Hu Maomao	Singapore Institute of Technology
	Khee Poh Lam	Agency for Science, Technology and Research (A*STAR)
	Wong Nyuk Hien	Agency for Science, Technology and Research (A*STAR)
	Ge Zhengwei	National University of Singapore
	Stephen Tay	National University of Singapore
Indonesia	DJUNAEDY, Ery.	PT Sigmatech Tatakarsa
	KOERNIAWAN, Mochamad Donny	Institut Teknologi Bandung
	MANGKUTO, Rizki Armanto.	Institut Teknologi Bandung
	PARAMITA, Beta	Universitas Pendidikan Indonesia
	ALFATA, Muhammad Nur Fajri	Direktorat Bina Teknik Permukiman dan Perumahan, Kementerian Pekerjaan Umum dan Perumahan Rakyat RI
	SYAFII, Nedyomukti Imam.	Universitas Gadjah Mada
	HARIYADI, Agus.	Universitas Gadjah Mada
	ATTHAILLAH.	Universitas Malikussaleh
	KHIDMAT, Rendy Perdana.	Institut Teknologi Sumatera

Platinum

Gold

Silver

NIKKEN EXPERIENCE, INTEGRATED

😚 TAKENAKA

Grant

KRF Kansai Research Foundation for Technology Promotion 公益財団法人 関西エネルギー・リサイクル科学研究指現財団